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Optimization of solid-phase extraction using artificial neural networks
in combination with experimental design for determination of

resveratrol by capillary zone electrophoresis in wines

Miroslava Spaniĺa∗, Jǐrı́ Pazourek, Marta Farková, Josef Havel
Department of Analytical Chemistry, Faculty of Science, Masaryk University, Kotl´ařská 2, CZ-61137 Brno, Czech Republic

Abstract

Solid-phase extraction (SPE) is often used for preconcentration of analytes from biological samples. Such an analytical step requires
optimization for obtaining reliable results. Optimization in analytical chemistry is traditionally still often done with relaxation method, when
an optimal value of a single variable is searched for (single variable approach (SVA)). However, if the optimized procedure is complex,
there is a danger not to find the real optimum by SVA. Therefore, more advanced optimization approaches should be applied—multivariable
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pproach (MVA). Applying MVA optimization and finding the real optimum, better experimental conditions are obtained and thu
hemicals and analytical procedure cost can be served. Nowadays, using artificial neural networks (ANN’s) in combination wit
apidly expanding. In this work, the optimization of SPE using relaxation method (SVA) and optimization by ANN’s in combinati
xperimental design (MVA) are compared and latter approach is practically illustrated. Advantages of MVA over SVA for optimiz
iscussed. The prediction of the optimal SPE conditions for determinationcis- andtrans-resveratrol in Australian wines by capillary zo
lectrophoresis is described and the improvement of efficiency of SPE using MVA is confirmed.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Each analytical method consists of specific sets of experi-
ental conditions. To find the best conditions, optimization is
sually required. One kind of optimization strategies is based
n some assumptions about the experimental space (a system-
tic scan of the space and the random search by experimental
esign). Other strategies make strong assumptions about the
esponse surface. They try to find the optimum as quickly as
ossible and search only in a local area of the search space
Simplex)[1].

The single variable approach (SVA) or multivariable ap-
roach (MVA) are commonly used for optimization of ana-

ytical methods. The first one may require many experiments
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and thus much experimental work. In this “step-by-s
approach, one experimental parameter is regularly cha
within an interval of interest while others parameters
kept constant. When a presumptive optimum of the te
parameter is found, the value is fixed and another pa
eter is to be optimized. Testing every possible point
each parameter is time and cost consuming, which is
ous, and may not lead to an optimum at all. The mis
can occur when a local optimum instead of a global on
found.

In the second approach, all experimental para
ters are changed simultaneously and the probabilit
global optimum finding is much higher. This goal
effectively gained by MVA. To prepare an experim
tal set which ensures the maximal information ab
the data set, a suitable experimental design shoul
used.
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Fig. 1. General scheme of the three-level central composite design (CCD).
The points belongs to apportionment of experiments over intervals of opti-
mized parameters (e.g. factor 1, volume of sample; factor 2, the flow rate;
and factor 3, volume of eluent).

1.1. Experimental design

By an experimental design (ED), a planned series of op-
erations called experiments is meant. When more than one
variable is changed between experiments the individual con-
ditions are called factors. The particular values at which ex-
periments are run are called the factor levels. ED is applied
to determine by an efficient informative way the set of con-
ditions that are required to obtain a product or process with
desirable, often optimal characteristics[1].

An unlimited number of experimental design composites
is possible. Including different patterns in different parts of
search space, each is designed to efficiently answer a particu-
lar question. For systematic optimization, central composite
design (CCD) is frequently used (Fig. 1).

CCD is very efficient, providing much information on ex-
periment variable effects and overall experimental error in
a minimum number of required runs. In comparison with
SVA, in multivariate approach, the analysis time and num-
ber of experiments is reduced and statistical interpretation
possibilities are increased. The acquired data from experi-
mental design are evaluated using chemometrical methods.
Applications of experimental designs in combination with ar-
tificial neural networks (CCD-ANN) for capillary zone elec-
trophoresis has been first time applied by Havel and cowrkers
[2]. Later, a various applications of ANN’s for chemical data
e
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Fig. 2. Basic element of ANN (neuronk), receiving inputs data from neigh-
bouring neuronsx0–xi (with weightsw0–wj), processing of information (for
sum see Eq.(1)) and dispatching output data to other neuron.

tion, output neurons provide the predicted value or pattern,
and hidden neurons neither receive inputs directly nor pro-
vide output values directly. The neuron sums the product of
each connection weight (wjk) from a neuronj to the neuron
k and input (xj) and the additional weight called the bias to
get the value sum for the neuronk (Eq.(1)).

sumk =
∑

j

xjwjk + biask (1)

The sum of the weighted inputs is transformed with a trans-
fer function and this function is used to get the output level.
A process of training means that the weights are corrected
so as to produce prespecified (“correct”) target values. The
training requires sets of pairs (XS, YS) for input: the actual
input into the network is the vectorXS, and the correspond-
ing target, or prespecified answer, is labelledYS. The goal of
the training is to correct the weights that will give the correct
answersYS for each vectorXS from the training set. After the
training has been completed successfully, it is hoped that the
network will give correct predictions for any new objectX.
As the training method of multilayered neural network, back
propagation was used[11]. Finally, after the learning phase
using mathematical algorithm, ANN can predict desired in-
formation.

The theory of different networks has been reviewed by
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valuation has been done[3–9].

.2. Artificial neural networks

Application of ANN’s for data processing is characteri
y a simplified analogy with biological neurons. Each neu

s linked to certain of its neighbours with varying coefficie
f connectivity that represent the strengths (the weight

hese connections (Fig. 2). A network of artificial neurons
omposed of a large number of simple, highly interconne
rocessing elements (neurons) working in parallel provi
n output response to an input data[10].

The neurons are sorted in an input layer, hidden lay
one or more) and an output layer (notation I:H:O). In
eurons accept the input data characterizing each obs
upan and Gasteiger[12]. In this work, a multilayered feed
orward neural network was used. As the learning sch
he algorithm of back-propagation in combination with qu
ropagation, which attempts to use a simple quadratic m
f the error surface (calculated independently along
eight) to speed convergence, was applied.

.3. Solid-phase extraction

Solid-phase extraction (SPE) is commonly used as a
p and preconcentration technique. A liquid sample is pa

hrough the column, which is filled with a polymeric poro
orbent. The sample compounds with chemical affinity to
ent are retained and consecutively eluted by suitable so
he extraction is a complex process and according to the
cter of the sample (polarity, solubility, pKa, . . .) the sorben
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and elution solvent should be carefully chosen. Instead of
the flow rate or temperature, the amount of sample and elu-
tion solvent composition are the most important factors for
efficiency of extraction. Therefore, the optimization of the
important factors is required for the real optimum searching.

The versatility of SPE allows it to be used for purification,
trace enrichment, solvent exchange, etc. In this work, SPE
has been used for preconcentration of resveratrol in wines
[13–16]. To our knowledge known method using C18 car-
tridge for extraction of resveratrol was taken[13] and be-
cause of complexity of this method, the optimization using
relaxation method and ED-ANN’s was done. The optimized
parameters were: the flow rate of solutions though the col-
umn, the volume of the sample and the volume of the eluent.
The optimal conditions were taken for electrophoretic anal-
ysis.

1.4. Capillary electrophoresis

Capillary electrophoresis is current method used for rapid
analysis of biological and environmental samples. The sepa-
ration of analytes is based on different mobilities of analytes
in electric field[19]. The preconcentration of wines by SPE
is recommended to obtain lower detection limit and to elimi-
nate the interferences of other compounds presented in wines
[13–18]. In this work, the electrophoretic separation condi-
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2.2. Chemicals

The standard solution of resveratrol from Sigma (St.
Louis, Mo, USA), 0.1 mM concentration was prepared in
12% ethanolic solution. Methanol (99.8%), ethanol (>99%)
and sodium tetraborate from Lachema (Brno, Czech Re-
public) were purchased. Mesityloxide from Fluka (Buchs,
Switzerland) for EOF measurement and sodium hydroxide
from Merci (Brno, Czech Republic) was used. Water was
double distilled in Heraeus apparatus (Hanau, Germany).

2.3. Software

The data were processed using Trajan 3.0 software pack-
age (Trajan Neural Network Simulator, Release 3.0 D, Copy-
right Trajan Software Ltd. (1996–1998)).

2.4. Capillary electrophoresis

Electrophoretic measurements were carried out using 3D
CE Agilent Technologies equipment provided with a diode
array detector and fused-silica capillary (Composite Metal
Services, The Chase, Hallow, UK), total length 38.5 cm (ef-
fective length 30 cm)× 75�m i.d. As the background elec-
trolyte, 25 mM borate pH 9.38 was used. The sample was
hydrodynamically injected for 4 s with 50 mbar and the pos-
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ions presented by Pazourek and coworkers[13] were used fo
nalyses of samples of Australian wines. The determin
f cis- andtrans-resveratrol was carried out.

The main goal of this paper was reach the higher
iency for resveratrol extraction. The optimal conditions
PE of resveratrol from Australian wine samples propo
y relaxation method and by central composite design

hree factors in combination with artificial neural netw
ere compared. The optimal conditions with the hig
fficiency were taken for electrophoretic analysis of w
amples and for determination and quantification ofcis- and
rans-resveratrol in the samples.

. Experimental

.1. Materials and instrumentation

The extraction columns BakerBond SPE octadecyl (18)
ndcapped reversed phase by J.T. Baker (Phillipsburg
SA) with 100 mg of octadecyl and 1 ml column size w
sed (product number 7020-01). The solutions were d
y peristaltic pump Labeco PCR 01 (Spišsḱa Nov́a Ves, Slo
akia) on the column. The dosing vessel, the SPE co
nd the detector were connected with tubes i.d. 0.032
ilson. The spectrophotometric detector HP 1050 conne
ith liner recorder TZ 4620 from Laboratory Instrume

Prague, Czech Republic) was used. The measurement
one at room temperature and the response of detecto
etected at 305 nm.
tive separation voltage +20 kV was applied. The EOF
een controlled by measuring of 0.1% mesityloxide. All
easurements were measured at 25◦C and were collected
05 nm.

The capillary was first conditioned with 1 M sodium h
roxide for 30 min at 40◦C and flushed 10 min with doub
istilled water and 10 min with the 25 mM borate runn
uffer. Between the analysis, the capillary was flushed
.1 M sodium hydroxide (1 min), water (1 min), and runn
uffer (2 min).

. Results and discussion

.1. SVA

Single variable approach optimization was spectroph
etricaly measured as first. Standard solution of resve
.1 mM used for extraction was prepared in 12% ethan
olution to simulate matrix of wine. The parameters w
he flow rate (y), the sample volume (x) and the volume o
luent (z). The other parameters were kept constant. The
mn was treated in following procedure: 2 ml of metha

or preconditioning, 2 ml of distilled water to clean off t
mpurities, x ml of sample solution, 2xml distilled water
or matrix flushing and finallyzml of methanol for analyt
lution. In the first step, the flow rate was changed w

he range 0.3–1.2 ml min−1. The sample volume and t
ethanol volume for elution was 1 ml. Observed data w

valuated manually. Half-widthw1/2 and retention timetm
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Table 1
Experimental design for SPE optimization

Run Volume of
samplex (ml)

Flow ratey
(ml min−1)

Volume of
methanolz
(ml)

Efficiencya Ncalc

1 0.80 0.50 1.60 11.9
2 0.80 0.50 4.00 10.1
3 0.80 1.00 1.60 10.8
4 0.80 1.00 4.00 8.8
5 2.00 0.50 1.60 10.9
6 2.00 0.50 4.00 8.5
7 2.00 1.00 1.60 8.5
8 2.00 1.00 4.00 7.9
9 1.40 0.75 2.80 11.5

10 0.35 0.75 2.80 11.1
11 2.45 0.75 2.80 8.4
12 1.40 0.30 2.80 7.6
13 1.40 1.20 2.80 7.9
14 1.40 0.75 0.68 9.4
15 1.40 0.75 4.92 8.3
16 1.40 0.75 2.80 11.5
17 0.50 0.60 3.00 11.2
18 1.60 1.05 1.70 8.4
19 1.10 0.45 1.00 11.9

a EfficiencyN= 5.54 (tm/w1/2)2; tm, retention time of the peak;w1/2, half
width of the peak.

of each recorded peak was measured and the efficiencyN
was calculated using standard equation (Table 1). In the sec-
ond step, the volume of sample was optimized in the range
0.3–2.5 ml and finally the methanol volume was optimized in
the range 0.6–5 ml and efficiencyNwas calculated. The opti-
mal conditions found by SVA were: 1.1 ml of the sample, the
flow rate 1 ml min−1 and 2 ml of methanol for elution. The
number of experiments was 45. The recovery of resveratrol
was 90%.

3.2. MVA

Multivariable optimization approach requires all the vari-
ables changed in the same time. To do this an experimen-
tal design is usually applied. In our case, we applied central
composite design for three factors (parameters) (Fig. 1). Each
parameter was tested at five levels. The number of 16 experi-
ments was performed. The variablesx, yandzand calculated
efficienciesNcalc are shown in the table (Table 2).

Table 4
Analysis of wines—determination ofcis-resveratrol andtrans-resveratrol

Wine Producer, year and denomination of origin cis-
Resveratrol
(mgl−1)

trans-
Resveratrol
(mgl−1)

W tate, Riverina Wine, Griffith, Australia 0.76 1.07
, Riverina Wine, Griffith, Australia 0.36 1.98

R a Estate, Riverina Wine, Griffith, Australia 1.62 3.71
Estate, Riverina Wine, Griffith, Australia 1.81 4.46

erina Estate, Riverina Wine, Griffith, Australia 1.03 2.11
rina Estate, Riverina Wine, Griffith, Australia 1.32 2.98
rina Wine, Griffith, Australia 1.31 2.92

Table 2
Calculated and predicted efficiency (outputs of ANN)

Run Efficiency
Ncalc

a
Efficiency
Npred

b
Ncalc −
Npred

Error Error relative
Ncalc− Npred (%)

1 11.9 12.5 −0.6 0.11 −4.43
2 10.1 10.5 −0.4 0.09 −4.03
3 10.8 10.9 −0.1 0.01 −0.51
4 8.8 9.2 −0.4 0.09 −4.72
5 10.9 10.9 −0.0 0.00 −0.22
6 8.5 8.6 −0.1 0.02 −1.14
7 8.5 8.4 0.1 0.03 1.76
8 7.9 7.6 0.3 0.02 1.47
9 11.5 11.6 −0.1 0.01 −0.54

10 11.1 10.6 0.5 0.11 5.14
11 8.4 8.6 −0.2 0.04 −2.20
12 7.6 7.6 0.0 0.00 0.02
13 7.9 8.2 −0.3 0.05 −2.77
14 9.4 9.4 −0.0 0.00 −0.15
15 8.3 8.3 −0.0 0.00 −0.06
16 11.5 11.7 −0.2 0.03 −1.31
17 11.2 11.2 −0.0 0.01 −0.37
18 8.4 8.9 −0.5 0.09 −4.84
19 11.9 12.6 −0.7 0.12 −4.77

1–16, training values and 17–19, values of verification.
a Ncalc= 5.54 (tm/w1/2)2; tm, retention time of the peak;w1/2, half width

of the peak.
b Npred, prediction ANN’s (3:3:1).

Table 3
Comparison of SVA and MVA optimal conditions

Volume of
sample (ml)

Flow rate
(ml min−1)

Volume of
methanol (ml)

Efficiency
Ncalc

a

SVA 1.10 1.00 2.00 11.1
MVA 0.85 0.40 0.75 13.0

a Ncalc= 5.54 (tm/w1/2)2; tm, retention time of the peak;w1/2, half width
of the peak.

The data obtained from experimental measurements were
used for modelling using artificial neural networks. The vari-
ables were used as inputs for ANN, as output the value of
efficiency of extraction was used.

The data set of experimental design was divided onto 16
values of the training set and 3 values were used for the ver-
ification (15 training values were taken on the ground of ex-
perimental design and the central point was measured twice).
The verification values were randomly taken from the ranges
of all optimizing variables.
hite wines Lombard Station, Chardonnay 2001, Riverina Es
Three corners, Chardonnay 2001, Riverina Estate

ed wines Bushman’s Gully, Cabernet Merlot, 2001, Riverin
Bushman’s Gully, Shiraz Cabernet, 2001, Riverina
Bushman’s Gully, Cabernet Sauvignon, 2001, Riv
Lombard Station, Cabernet Sauvignon, 2001, Rive
Three corners, Shiraz, 2001, Riverina Estate, Rive
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Fig. 3. The graphs of the response surface. (A) Efficiency as the function of the sample volumex (0.35–2.45 ml) and the flow ratey (0.3–1.2 ml). (B) Efficiency
as the function of the flow ratey (0.3–1.2 ml) and the eluent volumez (0.68–4.92 ml). (C) Efficiency as the function of the eluent volumez (0.68–4.92 ml) and
the sample volumex (0.35–2.45 ml).

Fig. 4. Electropherograms of white wine. Running buffer 25 mM tetraborate,
pH 9.38, separation voltage +20 kV, hydrodynamic injection 4 s (50 mbar),
temperature 25◦C, detection wavelength 305 nm. (A) Direct injection of
wine and (B) preconcetration using SPE.

Back propagation in combination with quick propagation
as a training algorithm for multilayer perceptrons was ap-
plied for the suitable network searching. During the training
process, the variable values of weights between individual
neurons were assigned. Simultaneously, the values of error,
used to determine how a neural network is performing during
iterative training and execution, were calculated. The ANN
architecture was searched for by the Trajan Neural Network
Simulator. The optimal network was afterwards used for the
training process and the prediction, as well.

The program Trajan tested neural networks with one to
seven neurons in the hidden layer with 1000 epochs for train-
ing and the optimal structure of the network with three neu-
rons in the hidden layer was applied for further prediction
(3:3:1). This network predicted efficiency with the error up
to 5% (Table 2) and on this base, the optimal conditions



M. Spanilá et al. / J. Chromatogr. A 1084 (2005) 180–185 185

were found: 0.85 ml of sample, 0.40 ml min−1 flow rate and
0.75 ml of eluent.

For the better view of given results, the graphs of the re-
sponse surface were drawn. The best conditions for the max-
imum efficiency can be seen in the graph of the response
surface for each couple of tested parameters. There is the
response surface of the sample volume and the flow rate
(Fig. 3A), the flow rate and the volume of eluent (Fig. 3B)
and the volume of eluent and the volume of sample (Fig. 3C).
In the graphs it is clearly shown, that lower flow rate, lower
eluent volume and lower volume of sample gives higher ef-
ficiency. Finally, the results obtained by SVA and MVA op-
timization are compared (Table 3).

3.3. Applications of the optimized conditions

SPE is useful preconcentration method in analysis of wine.
In direct injection of wine (without preconcentration), both
forms of the resveratrol are under the limit of detection
(Fig. 4). In CZE of Australian wine samples, the optimal
conditions of SPE found by MVA were applied The LOD of
trans-resveratrol was 0.26 mgl−1 (for preconcentrated sam-
ples). The quantification ofcis- andtrans-resveratrol in the
samples was done (Table 4).
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[6] M. Farkov́a, E.M. Pẽna-Méndez, J. Havel, J. Chromatogr. A 848
(1999) 365.

[7] V. Dohnal, M. Farkov́a, J. Havel, Chirality 11 (1999) 616.
[8] J. Havel, J.E. Madden, P.R. Haddad, Chromatographia 49 (1999)

481.
[9] J. Havel, M. Breadmore, M. Macka, P.R. Haddad, J. Chromatogr. A

850 (1999) 345.
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